Assista o video
quinta-feira, 27 de maio de 2010
quarta-feira, 26 de maio de 2010
Exercícios sobre equações
1. Desenvolva as equações se necessário e encontre os valores dos coeficientes:
a) (x+3)(x+4)=2x(2x-1)
b) x² + 7x + 12 = 4x² - 2x
c) -3x² + 9x + 12 = 0
d) 3x² - 9x - 12 = 0
e) x² - 3x - 4 = 0
f) (x-4)(x+1) = 0
2.Calcular o discriminante de cada equação e analisar as raízes em cada caso:
a) x² + 9 x + 8 = 0
b) 9 x² - 24 x + 16 = 0
c) x² - 2 x + 4 = 0
d) 3 x² - 15 x + 12 = 0
e) 10 x² + 72 x - 64 = 0
3.Resolver as equações:
a) x² + 6 x + 9 = 0
b) 3 x² - x + 3 = 0
c) 2 x² - 2 x - 12 = 0
a) (x+3)(x+4)=2x(2x-1)
b) x² + 7x + 12 = 4x² - 2x
c) -3x² + 9x + 12 = 0
d) 3x² - 9x - 12 = 0
e) x² - 3x - 4 = 0
f) (x-4)(x+1) = 0
2.Calcular o discriminante de cada equação e analisar as raízes em cada caso:
a) x² + 9 x + 8 = 0
b) 9 x² - 24 x + 16 = 0
c) x² - 2 x + 4 = 0
d) 3 x² - 15 x + 12 = 0
e) 10 x² + 72 x - 64 = 0
3.Resolver as equações:
a) x² + 6 x + 9 = 0
b) 3 x² - x + 3 = 0
c) 2 x² - 2 x - 12 = 0
Equação do 2º grau(Problemas matemáticos)
1) O triplo do quadrado do número de filhos de Pedro é igual a 63 menos 12 vezes o número de filhos. Quantos filhos Pedro tem?
Sendo x o número de filhos de Pedro, temos que 3x2 equivale ao triplo do quadrado do número de filhos e que 63 - 12x equivale a 63 menos 12 vezes o número de filhos. Montando a sentença matemática temos:
3x2 = 63 - 12x
Que pode ser expressa como:
3x2 + 12x - 63 = 0
Temos agora uma sentença matemática reduzida à forma ax2 + bx + c = 0, que é denominada equação do 2º grau. Vamos então encontrar as raízes da equação, que será a solução do nosso problema:
Primeiramente calculemos o valor de Δ:
Como Δ é maior que zero, de antemão sabemos que a equação possui duas raízes reais distintas. Vamos calculá-las:
A raízes encontradas são 3 e -7, mas como o número de filhos de uma pessoa não pode ser negativo, descartamos então a raiz -7.
Portanto:
Pedro tem 3 filhos.
2) Uma tela retangular com área de 9600cm2 tem de largura uma vez e meia a sua altura. Quais são as dimensões desta tela?
Se chamarmos de x altura da tela, temos que 1,5x será a sua largura. Sabemos que a área de uma figura geométrica retangular é calculada multiplicando-se a medida da sua largura, pela medida da sua altura. Escrevendo o enunciado na forma de uma sentença matemática temos:
x . 1,5x = 9600
Que pode ser expressa como:
1,5x2 - 9600 = 0
Note que temos uma equação do 2º grau incompleta, que como já vimos terá duas raízes reais opostas, situação que ocorre sempre que o coeficiente b é igual a zero. Vamos aos cálculos:
As raízes reais encontradas são -80 e 80, no entanto como uma tela não pode ter dimensões negativas, devemos desconsiderar a raiz -80.
Como 1,5x representa a largura da tela, temos então que ela será de 1,5 . 80 = 120. Portanto:
Esta tela tem as dimensões de 80cm de altura, por 120cm de largura.
3) O quadrado da minha idade menos a idade que eu tinha 20 anos atrás e igual a 2000. Quantos anos eu tenho agora?
Denominando x a minha idade atual, a partir do enunciado podemos montar a seguinte equação:
x2 - (x - 20) = 2000
Ou ainda:
A solução desta equação do 2º grau completa nós dará a resposta deste problema. Vejamos:
As raízes reais da equação são -44 e 45. Como eu não posso ter -44 anos, é óbvio que só posso ter 45 anos. Logo:
Agora eu tenho 45 anos.
4) Comprei 4 lanches a um certo valor unitário. De outro tipo de lanche, com o mesmo preço unitário, a quantidade comprada foi igual ao valor unitário de cada lanche. Paguei com duas notas de cem reais e recebi R$ 8,00 de troco. Qual o preço unitário de cada produto?
O enunciado nos diz que os dois tipos de lanche têm o mesmo valor unitário. Vamos denominá-lo então de x.
Ainda segundo o enunciado, de um dos produtos eu comprei 4 unidades e do outro eu comprei x unidades.
Sabendo-se que recebi R$ 8,00 de troco ao pagar R$ 200,00 pela mercadoria, temos as informações necessárias para montarmos a seguinte equação:
4 . x + x . x + 8 = 200
Ou então:
Como x representa o valor unitário de cada lanche, vamos solucionar a equação para descobrimos que valor é este:
As raízes reais da equação são -16 e 12. Como o preço não pode ser negativo, a raiz igual -16 deve ser descartada. Assim:
O preço unitário de cada produto é de R$ 12,00.
5) O produto da idade de Pedro pela idade de Paulo é igual a 374. Pedro é 5 anos mais velho que Paulo. Quantos anos tem cada um deles?
Se chamarmos de x a idade de Pedro, teremos que x - 5 será a idade de Paulo. Como o produto das idades é igual a 374, temos que x . (x - 5) = 374.
Esta sentença matemática também pode ser expressa como:
Primeiramente para obtermos a idade de Pedro, vamos solucionar a equação:
As raízes reais encontradas são -17 e 22, por ser negativa, a raiz -17 deve ser descartada. Logo a idade de Pedro é de 22 anos.
Como Pedro é 5 anos mais velho que Paulo, Paulo tem então 17 anos. Logo:
Pedro tem 22 anos e Paulo tem 17 anos.
Em notação matemática, definindo a incógnita como x, podemos escrever esta sentença da seguinte forma:
3x2 = 15x
Ou ainda como:
3x2 - 15x = 0
A fórmula geral de resolução ou fórmula de Bháskara, pode ser utilizada na resolução desta equação, mas por se tratar de uma equação incompleta, podemos solucioná-la de uma outra forma.
Como apenas o coeficiente c é igual a zero, sabemos que esta equação possui duas raízes reais. Uma é igual a zero e a outra é dada pelo oposto do coeficiente b dividido pelo coeficiente a. Resumindo podemos dizer que:
Temos então:
Assim sendo:
Os dois números são 0 e 5.
7) Quais são as raízes da equação x2 - 14x + 48 = 0?
Podemos resolver esta equação simplesmente respondendo esta pergunta: Quais são os dois números que somados totalizam 14 e que multiplicados resultam em 48?
Sem qualquer esforço chegamos a 6 e 8, pois 6 + 8 = 14 e 6 . 8 = 48.
Segundo as relações de Albert Girard, que você encontra em detalhes em outra página deste site, estas são as raízes da referida equação.
Para simples conferência, vamos solucioná-la também através da fórmula de Bháskara:
As raízes da equação x2 - 14x + 48 = 0 são 6 e 8.
8) O dobro do quadrado da nota final de Pedrinho é zero. Qual é a sua nota final?
Sendo x a nota final, matematicamente temos:
2x2 = 0
Podemos identificar esta sentença matemática como sendo uma equação do segundo grau incompleta, cujos coeficientes b e c são iguais a zero.
Conforme já estudamos este tipo de equação sempre terá como raiz real o número zero. Apenas para verificação vejamos:
A nota final de Pedrinho é igual a zero.
9) Solucione a equação biquadrada: -x4 + 113x2 - 3136 = 0.
Substituindo na equação x4 por y2 e também x2 e y temos:
-y2 + 113y - 3136 = 0
A resolvendo temos:
Substituindo os valores de y na expressão x2 = y temos:
Para y1 temos:
Para y2 temos:
Assim sendo:
As raízes da equação biquadrada -x4 + 113x2 - 3136 = 0 são: -8, -7, 7 e 8.
10) Encontre as raízes da equação biquadrada: x4 - 20x2 - 576 = 0.
Novamente iremos substituir x4 por y2 e x2 e y, obtendo uma equação do segundo grau:
y2 - 20y - 576 = 0
Ao resolvermos a mesma temos:
Substituindo os valores de y na expressão x2 = y obtemos as raízes da equação biquadrada:
Para y1 temos:
Para y2, como não existe raiz quadrada real de um número negativo, o valor de -16 não será considerado.
Desta forma:
As raízes da equação biquadrada x4 - 20x2 - 576 = 0 são somente: -6 e 6.
Sendo x o número de filhos de Pedro, temos que 3x2 equivale ao triplo do quadrado do número de filhos e que 63 - 12x equivale a 63 menos 12 vezes o número de filhos. Montando a sentença matemática temos:
3x2 = 63 - 12x
Que pode ser expressa como:
3x2 + 12x - 63 = 0
Temos agora uma sentença matemática reduzida à forma ax2 + bx + c = 0, que é denominada equação do 2º grau. Vamos então encontrar as raízes da equação, que será a solução do nosso problema:
Primeiramente calculemos o valor de Δ:
Como Δ é maior que zero, de antemão sabemos que a equação possui duas raízes reais distintas. Vamos calculá-las:
A raízes encontradas são 3 e -7, mas como o número de filhos de uma pessoa não pode ser negativo, descartamos então a raiz -7.
Portanto:
Pedro tem 3 filhos.
2) Uma tela retangular com área de 9600cm2 tem de largura uma vez e meia a sua altura. Quais são as dimensões desta tela?
Se chamarmos de x altura da tela, temos que 1,5x será a sua largura. Sabemos que a área de uma figura geométrica retangular é calculada multiplicando-se a medida da sua largura, pela medida da sua altura. Escrevendo o enunciado na forma de uma sentença matemática temos:
x . 1,5x = 9600
Que pode ser expressa como:
1,5x2 - 9600 = 0
Note que temos uma equação do 2º grau incompleta, que como já vimos terá duas raízes reais opostas, situação que ocorre sempre que o coeficiente b é igual a zero. Vamos aos cálculos:
As raízes reais encontradas são -80 e 80, no entanto como uma tela não pode ter dimensões negativas, devemos desconsiderar a raiz -80.
Como 1,5x representa a largura da tela, temos então que ela será de 1,5 . 80 = 120. Portanto:
Esta tela tem as dimensões de 80cm de altura, por 120cm de largura.
3) O quadrado da minha idade menos a idade que eu tinha 20 anos atrás e igual a 2000. Quantos anos eu tenho agora?
Denominando x a minha idade atual, a partir do enunciado podemos montar a seguinte equação:
x2 - (x - 20) = 2000
Ou ainda:
A solução desta equação do 2º grau completa nós dará a resposta deste problema. Vejamos:
As raízes reais da equação são -44 e 45. Como eu não posso ter -44 anos, é óbvio que só posso ter 45 anos. Logo:
Agora eu tenho 45 anos.
4) Comprei 4 lanches a um certo valor unitário. De outro tipo de lanche, com o mesmo preço unitário, a quantidade comprada foi igual ao valor unitário de cada lanche. Paguei com duas notas de cem reais e recebi R$ 8,00 de troco. Qual o preço unitário de cada produto?
O enunciado nos diz que os dois tipos de lanche têm o mesmo valor unitário. Vamos denominá-lo então de x.
Ainda segundo o enunciado, de um dos produtos eu comprei 4 unidades e do outro eu comprei x unidades.
Sabendo-se que recebi R$ 8,00 de troco ao pagar R$ 200,00 pela mercadoria, temos as informações necessárias para montarmos a seguinte equação:
4 . x + x . x + 8 = 200
Ou então:
Como x representa o valor unitário de cada lanche, vamos solucionar a equação para descobrimos que valor é este:
As raízes reais da equação são -16 e 12. Como o preço não pode ser negativo, a raiz igual -16 deve ser descartada. Assim:
O preço unitário de cada produto é de R$ 12,00.
5) O produto da idade de Pedro pela idade de Paulo é igual a 374. Pedro é 5 anos mais velho que Paulo. Quantos anos tem cada um deles?
Se chamarmos de x a idade de Pedro, teremos que x - 5 será a idade de Paulo. Como o produto das idades é igual a 374, temos que x . (x - 5) = 374.
Esta sentença matemática também pode ser expressa como:
Primeiramente para obtermos a idade de Pedro, vamos solucionar a equação:
As raízes reais encontradas são -17 e 22, por ser negativa, a raiz -17 deve ser descartada. Logo a idade de Pedro é de 22 anos.
Como Pedro é 5 anos mais velho que Paulo, Paulo tem então 17 anos. Logo:
Pedro tem 22 anos e Paulo tem 17 anos.
Em notação matemática, definindo a incógnita como x, podemos escrever esta sentença da seguinte forma:
3x2 = 15x
Ou ainda como:
3x2 - 15x = 0
A fórmula geral de resolução ou fórmula de Bháskara, pode ser utilizada na resolução desta equação, mas por se tratar de uma equação incompleta, podemos solucioná-la de uma outra forma.
Como apenas o coeficiente c é igual a zero, sabemos que esta equação possui duas raízes reais. Uma é igual a zero e a outra é dada pelo oposto do coeficiente b dividido pelo coeficiente a. Resumindo podemos dizer que:
Temos então:
Assim sendo:
Os dois números são 0 e 5.
7) Quais são as raízes da equação x2 - 14x + 48 = 0?
Podemos resolver esta equação simplesmente respondendo esta pergunta: Quais são os dois números que somados totalizam 14 e que multiplicados resultam em 48?
Sem qualquer esforço chegamos a 6 e 8, pois 6 + 8 = 14 e 6 . 8 = 48.
Segundo as relações de Albert Girard, que você encontra em detalhes em outra página deste site, estas são as raízes da referida equação.
Para simples conferência, vamos solucioná-la também através da fórmula de Bháskara:
As raízes da equação x2 - 14x + 48 = 0 são 6 e 8.
8) O dobro do quadrado da nota final de Pedrinho é zero. Qual é a sua nota final?
Sendo x a nota final, matematicamente temos:
2x2 = 0
Podemos identificar esta sentença matemática como sendo uma equação do segundo grau incompleta, cujos coeficientes b e c são iguais a zero.
Conforme já estudamos este tipo de equação sempre terá como raiz real o número zero. Apenas para verificação vejamos:
A nota final de Pedrinho é igual a zero.
9) Solucione a equação biquadrada: -x4 + 113x2 - 3136 = 0.
Substituindo na equação x4 por y2 e também x2 e y temos:
-y2 + 113y - 3136 = 0
A resolvendo temos:
Substituindo os valores de y na expressão x2 = y temos:
Para y1 temos:
Para y2 temos:
Assim sendo:
As raízes da equação biquadrada -x4 + 113x2 - 3136 = 0 são: -8, -7, 7 e 8.
10) Encontre as raízes da equação biquadrada: x4 - 20x2 - 576 = 0.
Novamente iremos substituir x4 por y2 e x2 e y, obtendo uma equação do segundo grau:
y2 - 20y - 576 = 0
Ao resolvermos a mesma temos:
Substituindo os valores de y na expressão x2 = y obtemos as raízes da equação biquadrada:
Para y1 temos:
Para y2, como não existe raiz quadrada real de um número negativo, o valor de -16 não será considerado.
Desta forma:
As raízes da equação biquadrada x4 - 20x2 - 576 = 0 são somente: -6 e 6.
quarta-feira, 19 de maio de 2010
EQUAÇÃO DO 2º GRAU
EQUAÇÃO DO 2º GRAU
Denomina-se equação do 2º grau, qualquer sentença matemática que possa ser reduzida à forma ax2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a ≠ 0. a, b e c são coeficientes da equação. Observe que o maior índice da incógnita na equação é igual a dois e é isto que a define como sendo uma equação do segundo grau.
Equação do 2º grau completa e equação do 2º grau incompleta
Da definição acima temos obrigatoriamente que a ≠ 0, no entanto podemos ter b = 0 e/ou c = 0.
Caso b ≠ 0 e c ≠ 0, temos uma equação do 2º grau completa. A sentença matemática -2x2 + 3x - 5 = 0 é um exemplo de equação do 2º grau completa, pois temos b = 3 e c = -5, que são diferentes de zero.
-x2 + 7 = 0 é um exemplo de equação do 2º grau incompleta, pois b = 0.
Neste outro exemplo, 3x2 - 4x = 0 a equação é incompleta, pois c = 0.
Veja este último exemplo de equação do 2º grau incompleta, 8x2 = 0, onde tanto b, quanto c são iguais a zero.
Caso b ≠ 0 e c ≠ 0, temos uma equação do 2º grau completa. A sentença matemática -2x2 + 3x - 5 = 0 é um exemplo de equação do 2º grau completa, pois temos b = 3 e c = -5, que são diferentes de zero.
-x2 + 7 = 0 é um exemplo de equação do 2º grau incompleta, pois b = 0.
Neste outro exemplo, 3x2 - 4x = 0 a equação é incompleta, pois c = 0.
Veja este último exemplo de equação do 2º grau incompleta, 8x2 = 0, onde tanto b, quanto c são iguais a zero.
Resolução de equações do 2º grau
A resolução de uma equação do segundo grau consiste em obtermos os possíveis valores reais para a incógnita, que torne a sentença matemática uma equação verdadeira. Tais valores são a raiz da equação.
Fórmula Geral de Resolução
Para a resolução de uma equação do segundo grau completa ou incompleta, podemos recorrer à fórmula geral de resolução:
Esta fórmula também é conhecida como fórmula de Bháskara.
O valor b2 -4ac é conhecido como discriminante da equação e é representado pela letra grega Δ. Temos então que Δ = b2 -4ac, o que nos permitir escrever a fórmula geral de resolução como:
Resolução de equações do 2º grau incompletas
Para a resolução de equações incompletas podemos recorrer a certos artifícios. Vejamos:
Para o caso de apenas b = 0 temos:
Portanto para equações do tipo ax2 + c = 0, onde b = 0, podemos utilizar a fórmula simplificada para calcularmos as suas raízes. Observe no entanto que a equação só possuirá raízes no conjunto dos números reais se .
Para o caso de apenas c = 0 temos:
Portanto para equações do tipo ax2 + bx = 0, onde c = 0, uma das raízes sempre será igual a zero e a outra será dada pela fórmula .
Para o caso de b = 0 e c = 0 temos:
Podemos notar que ao contrário dos dois casos anteriores, neste caso temos apenas uma única raiz real, que será sempre igual a zero.
Para o caso de apenas b = 0 temos:
Portanto para equações do tipo ax2 + c = 0, onde b = 0, podemos utilizar a fórmula simplificada para calcularmos as suas raízes. Observe no entanto que a equação só possuirá raízes no conjunto dos números reais se .
Para o caso de apenas c = 0 temos:
Portanto para equações do tipo ax2 + bx = 0, onde c = 0, uma das raízes sempre será igual a zero e a outra será dada pela fórmula .
Para o caso de b = 0 e c = 0 temos:
Podemos notar que ao contrário dos dois casos anteriores, neste caso temos apenas uma única raiz real, que será sempre igual a zero.
Discriminante da equação do 2º grau
O cálculo do valor do discriminante é muito importante, pois através deste valor podemos determinar o número de raízes de uma equação do segundo grau.
Como visto acima, o discriminante é representado pela letra grega Δ e equivale à expressão b2 - 4ac, isto é: Δ = b2 - 4ac.
Como visto acima, o discriminante é representado pela letra grega Δ e equivale à expressão b2 - 4ac, isto é: Δ = b2 - 4ac.
Discriminante menor que zero
Caso Δ <> 0, a equação tem duas raízes reais e diferentes, pois :
Caso Δ <> 0, a equação tem duas raízes reais e diferentes, pois :
Conjunto Verdade de equações do 2º grau
A partir do estudado acima, podemos esquematizar o conjunto verdade das equações do segundo grau completas e incompletas como a seguir:
Para o caso das equações completas temos:
Para o caso das equações incompletas onde somente b = 0 temos:
Para o caso das equações incompletas onde somente c = 0 temos:
E no caso das equações incompletas onde tanto b = 0, quanto c = 0 temos:
Exemplo de resolução de uma equação do segundo grau
Para o caso das equações completas temos:
Para o caso das equações incompletas onde somente b = 0 temos:
Para o caso das equações incompletas onde somente c = 0 temos:
E no caso das equações incompletas onde tanto b = 0, quanto c = 0 temos:
Exemplo de resolução de uma equação do segundo grau
Encontre as raízes da equação: 2x2 - 6x - 56 = 0
Aplicando a fórmula geral de resolução à equação temos:
Observe que temos duas raízes reais distintas, o que já era de se esperar, pois apuramos para Δ o valor 484, que é maior que zero.
Logo:
As raízes da equação 2x2 - 6x - 56 = 0 são: -4 e 7.
Aplicando a fórmula geral de resolução à equação temos:
Observe que temos duas raízes reais distintas, o que já era de se esperar, pois apuramos para Δ o valor 484, que é maior que zero.
Logo:
As raízes da equação 2x2 - 6x - 56 = 0 são: -4 e 7.
Assinar:
Postagens (Atom)